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Recovery rates reflect distance to a tipping point in a
living system
Annelies J. Veraart1, Elisabeth J. Faassen1, Vasilis Dakos1, Egbert H. van Nes1, Miquel Lürling1,2 & Marten Scheffer1

Tipping points, at which complex systems can shift abruptly
from one state to another, are notoriously difficult to predict1.
Theory proposes that early warning signals may be based on the
phenomenon that recovery rates from small perturbations should
tend to zero when approaching a tipping point 2,3; however, evidence
that this happens in living systems is lacking. Here we test such
‘critical slowing down’ using a microcosm in which photo-inhibition
drives a cyanobacterial population to a classical tipping point when a
critical light level is exceeded. We show that over a large range of
conditions, recovery from small perturbations becomes slower as the
system comes closer to the critical point. In addition, autocorrelation
in the subtle fluctuations of the system’s state rose towards the
tipping point, supporting the idea that this metric can be used as
an indirect indicator of slowing down4,5. Although stochasticity
prohibits prediction of the timing of critical transitions, our results
suggest that indicators of slowing down may be used to rank com-
plex systems on a broad scale from resilient to fragile.

Systems ranging from the brain and society to ecosystems and the
climate can have tipping points at which minor perturbations can invoke
a critical transition to a contrasting state6. The complexity of such sys-
tems prohibits accurate predictive modelling. However, it has been sug-
gested that even without mechanistic insight, the proximity of a tipping
point may be inferred from generic features of fluctuations and spatial
patterns that can be interpreted as early warning indicators1,7–9. This idea
is based on the phenomenon that at bifurcation points at which stability
of an equilibrium changes, the dominant real eigenvalue becomes zero10.
As a result, the rate of recovery from perturbation should go to zero as
such bifurcations are approached (Supplementary Notes 1). This phe-
nomenon, which is known as critical slowing down, is well established
in physics but it has only recently been suggested that the recovery rate
from perturbations could be an indicator of the distance to a tipping
point in complex living systems such as ecosystems3.

Although the prospect that the fragility of living systems could be
probed this way is attractive, experimental evidence has so far been
lacking. Instead, much work has been focused on ways to infer slowing
down from indirect indicators such as autocorrelation and variance.
However, although these indicators are linked to slowing down in
simple stochastically forced models1,5,9, recent theoretical studies indi-
cate that the indirect indicators will not always respond in simple
ways11 (Brock, W. A. & Carpenter, S. R., submitted). This is confirmed
by empirical studies on the climate5, the food web of a lake12 and
laboratory populations of water fleas13. In these systems, trends in
indirect indicators occurred but were not all consistent. Here we use
a controlled system in which there is positive feedback between organisms
and their physical environment to test critical slowing down directly
from recovery rates.

We exposed cyanobacteria in chemostat microcosms to increasing
light stress. This is a well understood system for which models have
shown alternative stable states and tipping points14,15. Cyanobacteria
provide the shade needed for their own growth, creating a positive
feedback, and this constitutes the mechanism behind the bistability.

Although light is needed for photosynthesis, light levels that are too
high are detrimental to primary producers such as the cyanobacteria
that we used. Mutual shading can ameliorate this stress, and is thus one
of the ways in which facilitation can outweigh competitive interactions
under harsh conditions16. Such feedback between organisms and their
environment is the mechanism behind alternative stable states in a
range of ecosystems17. Indeed, as a result of the facilitative shading, our
system can maintain a high biomass under incident light levels that
prohibit growth in low biomass cultures. A fold bifurcation that repre-
sents a classical tipping point occurs at the light level at which this
mechanism becomes too weak to allow persistence of the population14,15

(see Supplementary Notes 1 for a model analysis). Here, shading
becomes insufficient to prevent growth inhibition, and the resulting
loss of biomass further weakens the stabilizing shading effect. This
implies that a positive feedback is driving the system towards a crash.

We cultured cyanobacteria in two independently controlled chemostat
microcosms (M1 and M2) and increased incident light daily in small
steps to the point at which the population collapsed (see Methods). We
perturbed the populations every 4–5 days by removing 10% of their
biomass through dilution. Consistent with the model results (Sup-
plementary Fig. 1.1) the populations maintained a relatively high
biomass throughout the experiment until they collapsed rather
markedly when a tipping point was reached (Fig. 1 and Supplemen-
tary Notes 3). Recovery rates of both systems decreased gradually
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Figure 1 | The response of two populations of cyanobacteria
(Aphanizomenon flos-aquae) to dilution events under a regime of gradually
increasing light levels. Dilution events are indicated as perturbations p1–p6.
The light attenuation coefficient is a measure of population density. Thin curve
segments represent the baselines that were used for computing recovery rates.
The inset shows the experimental system.
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towards the tipping point, starting far from the bifurcation (Fig. 2a),
and tended to decline more rapidly towards the tipping point. This was
also predicted by our model (Supplementary Fig. 1.1).

In most complex systems, the mechanisms that are involved in
causing the slowing down will be difficult to unravel. However, in
our particular system the photosynthetic capacity of the cyanobacteria
that is at the heart of their growth potential can be sensed through
measurements of the efficiency of their light harvesting system (see
Methods). Whereas biomass remained relatively high in the trajectory
towards the critical threshold, this specific indicator of their vigour
declined linearly with increasing light stress, approaching zero at the
point of collapse (Fig. 2b). This is an independent confirmation that
the light-induced stress to the cyanobacteria in the two independently
operated microcosms does indeed undermine the resilience of the
system to the point at which collapse is inevitable.

In systems that are subject to stochastic perturbation regimes, slow-
ing down is predicted to be reflected in characteristic changes in fluc-
tuations of the state. In particular, it has been proposed that increases
in autocorrelation and variance can be interpreted as indirect indica-
tors of slowing down1,4,9. Although our experiment was not primarily
designed to study the effect of stochastic perturbation regimes, there
are continuous subtle fluctuations in our measurements of the density
of the cyanobacterial population. These fluctuations will reflect a mixture
of factors including measurement noise and instabilities in the lighting
system as well as true population fluctuations induced by the slightly
fluctuating conditions in the bubbled microcosms. We studied how
autocorrelation and variance in these subtle fluctuations changed as
our system approached the critical point. For this we analysed all the
stretches of continuous measurements of 1 day between the experi-
mental interruptions caused by the daily stepwise increase of light
intensity and the dilution perturbation events (see Methods).
Although autocorrelation was quite variable in the time series that
we studied, there was a significant increase towards the tipping point
in both experimental systems (Fig. 2c). No trend in variance was
apparent in the systems (Fig. 2d, see also Supplementary Notes 4).

These results are consistent with the prediction that measuring recovery
rates from perturbations is a robust way to detect critical slowing
down18, whereas indirect indicators of slowing down may or may not
increase towards a critical threshold11. Also, our findings are consistent
with the prediction that autocorrelation is usually directly related to
slowing down and may therefore provide a more robust signal than
variance in some situations11.

Perturbation experiments such as the ones in our experiment will
often be impossible in large complex systems, leaving indirect indica-
tors as the only tool by which to infer slowing down. However, experi-
mental probing of recovery rates may be feasible in some smaller
systems, as long as the timescales are appropriate and stochastic fluc-
tuations are small relative to experimental perturbations. Even in larger
systems, local perturbations may be an option to probe resilience,
allowing adaptive management to steer the system away from the brink
of collapse.

Perhaps most importantly, our experimental demonstration of slow-
ing down implies a proof of concept, providing a fundamental basis to the
current search for generic early warning signals in systems ranging from
the brain and ecosystems to society and the climate1. The fact that slowing
down in our system started far from the critical point suggests that
recovery rates as well as indirect indicators may be used to rank such
complex systems on a broad scale from stable to critical. This does not
mean that slowing down can be used to actually predict transitions.
Stochastic shocks will trigger critical transitions always before the bifurca-
tion point is reached, indicating that there is inherent unpredictability in
systems. Nevertheless, the prospect of having generic indicators of
resilience is a potentially large step forward. Mechanistic models to
predict tipping points in nature and society accurately are simply
beyond our reach, leaving empirical estimation of fragility as one of
the key challenges in complex systems science today1.

METHODS SUMMARY
Experiments were performed in two identical flat chemostat microcosms19 (M1
and M2) in which we cultured cyanobacteria (Aphanizomenon flos-aquae (L.)
Ralfs) on a nutrient-rich growth medium, modified from BG11 medium20. Light
irradiance was increased in steps of 23 mmol photons m22 s21 for M1 and 29 mmol
photons m22 s21 each day for M2. Photosynthetic efficiency was measured from
diurnal samples. The intensity of the light passing through the chemostats was
averaged at 5-min intervals, and light attenuation coefficients (e, m21) were cal-
culated as an indicator of biomass:

e~
{ ln Iout=Iinð Þ

d

where Iin is the intensity of the incoming light (mE), Iout is the intensity of the
outgoing light (mE) and d is the depth of the chemostats (m). External perturba-
tions were performed every 4–5 days by diluting the culture with 170 ml of sterile
medium. A baseline for calculating recovery rates was constructed for each per-
turbation event (Supplementary Notes 2 and Supplementary Fig. 2.1) by fitting a
quadratic curve from the period just before perturbation to the period just before
the next perturbation (thin curves in Fig. 1). Recovery rates after each perturbation
(l, per day) were then calculated from a linear regression of –ln(e0 2 ec) against
time, where e0 is the light attenuation of the baseline (m21) and ec is the light
attenuation of the chemostat (m21)3.

The lag 1 autocorrelation and variance were analysed for each uninterrupted
period between the daily manipulations after removing the trends from each period
by fitting polynomials of 2 degrees. To check for effects of nonlinear propagation of
measurement noise, we constructed a null model that assumed that all residuals
were due to uncorrelated normally distributed noise. As variance showed a trend
towards the bifurcation in this null model (Supplementary Table 4.1), we corrected
the observed variance by subtracting the median of the null model (Fig. 2d).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 2 | Indicators of slowing down as a function of light intensity.
a, Recovery rates after perturbation (p1–p6). b, Photosynthetic efficiency
(photosystem II quantum yield). c, Autocorrelation in the population density
estimator for each day based on 30 min average Iout data. d, Corrected variance
in daily time series (see Methods and Supplementary Notes 4). Fisher’s
combined (one-tailed) significance test of the slopes of the regression line’s
(n 5 6) in both microcosms: recovery rate, x2

4 5 18.48, P 5 0.001 (if the p6
perturbations are excluded (n 5 5), x2

4 5 12.39, P 5 0.015); photosynthetic
efficiency n 5 45, x2

4 5 147.66, P , 0.001; autocorrelation, n 5 23, x2
4 5 14.00,

P 5 0.007; variance, not significant, n 5 23, x2
4 5 7.72, P 5 0.102.
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METHODS
Experimental conditions. Experiments were performed in two identical flat
chemostats (V 1.7 l, 0.05 m optical path length)19. In these chemostats we cultured
the cyanobacterium Aphanizomenon flos-aquae (L.) Ralfs on a nutrient-rich sterile
growth medium that was modified from BG11 medium20. The chemostats were
kept at a stable temperature of 21 uC. A continuous flow of moistened air of 60–100
ml min21 was supplied through a sintered glass sieve at the bottom of the vessel to
ensure homogenous mixing of the culture. The air was mixed with CO2 to satisfy
the inorganic carbon need of the culture. CO2 flow was adjusted, when needed, to
maintain a pH of between 7.1 and 8.1. The chemostats were run at a dilution rate of
0.18 per day for chemostat 1 (named M1) and 0.21 per day for chemostat 2 and
(M2). They were illuminated using white LED lamps (SL3500w, Photon Systems
Instruments). Light irradiance was increased by 23mmol photons m22 s21 per day
for M1 and 29mmol photons m22 s21 per day for M2 by a Light Studio 1.3 12C
interface (Photon Systems Instruments, Brno).
Daily maintenance and measurements. Each day the walls of the chemostats were
scraped with a magnetic stirrer to prevent cyanobacterial attachment. After scraping,
we took samples to determine chlorophyll a concentrations and photosystem II
quantum yield (in triplicate) using a PhytoPAM (phyto-ED), and to determine
biovolume in a 400-ml sample volume (in triplicate) using a Casy TT Cell Counter,
with a 150-mm capillary (Innovatis AG Casy Technology). The intensity of the light
penetrating through the chemostat was recorded continuously using RA100 light
sensors (Bottemanne Weather Instruments) that were attached to the outer wall of
the chemostat and stored as 5-min averages on Squirell SQ1000 dataloggers (Grant
Instruments). The light sensors were removed during scraping of the chemostats.
Perturbations. At an incoming light intensity of 477mmol photons m22 s21 for
M1 and 571 for M2, the light attenuation coefficients of the chemostats became
stable. From this moment on, perturbations were performed every 4–5 days by
diluting the culture with 170 ml of sterile medium. The dilution was always per-
formed 2 h after the daily stepwise increase in light.
Recovery rates. We used the calculated light attenuation (Fig. 1 and
Supplementary Note 2) as a measure of the cyanobacterial biomass21. Before
calculation of recovery rates, the light data were corrected for sensor attachment
differences (Supplementary Note 2). Vertical light attenuation (e, m21) was cal-
culated from the corrected light data:

e~
{ ln Iout=Iinð Þ

d

where Iin is the intensity of the incoming light, Iout is the intensity of the outgoing
light (both measured in mmol photons m22 s21) and d is the optical path length of
the chemostats (m). Light attenuation data were smoothed for calculation of
recovery rates by taking a moving average of 1 h.

To calculate recovery rates, a baseline was constructed for each perturbation
event. This baseline was obtained by fitting a quadratic curve from the period just
before perturbation to the period just before the next perturbation (Fig. 1).
Parameters for the baseline were estimated by forcing it through the sets of e
and t (time, day) at the start and end of the curve, and by forcing the slope at
the start of the curve. The start slope was determined by the slope of the light
attenuation data in the 20 h before disturbance.

Recovery rate after perturbation (l, per day) was defined by an exponential
model3:

de

dt
~{l e0{ecð Þ

where e0 is the light attenuation coefficient of the baseline and ec is the light
attenuation of the chemostat (both m-1). We calculated l by a linear regression
of { ln e0{ecð Þ against time. To avoid the effect of the light data correction for
sensor position (Supplementary Note 2), recovery rates were calculated only on
the first 18–20 h after perturbation. In this period there was no change in light
meter position. Finally, the recovery rates were linearly regressed against incoming
light intensity.
Autocorrelation and variance. Autocorrelation and variance of the continuous
small fluctuations in our time series were analysed for each uninterrupted period
between the daily manipulations and light increments. We performed all analyses
on untransformed data (5-min averages of light attenuation data) as well as on data
that were averaged over non-overlapping periods of 30 min. We removed the
trends from each period with a constant light level by fitting polynomials of 2
degrees to the light attenuation, and we used the residuals to calculate the auto-
correlation by fitting an autoregressive model of lag 1 and variance by estimating
sample variance per day.

We analysed the effect of measurement noise using a null model (see
Supplementary Notes 4).

21. Huisman, J. & Weissing, F. J. Light-limited growth and competition for light in
well-mixed aquatic environments: an elementary model. Ecology 75, 507–520
(1994).
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Supplementary Notes 1. A Mathematical Model of the System.  

 

We modelled our cyanobacterial monoculture by applying the simple formulation of Huisman 

(1997)1. Primary production is integrated over the water column while accounting for self-shading 

by cyanobacterial biomass. The gross growth rate increases with light intensity under low light 

conditions, but decreases under high light conditions due to photoinhibition. We modelled the 

density A of a monoculture growing in a water column of depth z as: 

dA

dt
= pmax (

1

z
P(I )dz

0

z

∫ )A − lA      (1) 

where pmax is the maximum growth rate of the monoculture, l is the loss rate due to processes 

such as respiration, death, or dilution, and P(I) is the gross production rate as a function of the 

light intensity integrated over the whole water column and averaged over depth. The specific 

function of gross production as a function of light we used is: 

P(I ) =
I

aI 2 + I + hA       
 (2) 

where light intensity I is given by the Lambert-Beer law ( I(z) = Iine
(− kA− kbg )z

) with Iin the incoming 

light intensity, k the light attenuation coefficient and kbg the background turbidity 2. We used 

parameter values that correspond roughly to the parameterization of our experiment (Pmax=0.65 

day-1, l=0.2 day-1, a=0.055 µmol photons-1 m2 s , hA=100 µmol photons m-2 s-1, kbg=10 m-1, 

zmax=0.01 m, k=1 m2/g). By setting the vertical light attenuation per biomass of phytoplankton (k) 

to 1, we express population density in units of vertical light attenuation, making comparison with 

our experiment easier. 

In this model, cyanobacterial biomass increases with light intensity until it reaches a fold 

bifurcation where photoinhibition leads to the collapse of the cyanobacterial population 1,2  

(Supplementary Fig. 1.1a). The eigenvalue of the cyanobacterial population is predicted to 

approach zero smoothly over the range of light values used in our experiment (Supplementary 

Fig. 1.1b). As a result the recovery from a perturbation is slower close to the bifurcation 

(Supplementary Fig. 1.1d) than further away from it (Supplementary Fig. 1.1c). 

The model was solved numerically in MATLAB 7.6 with the software package GRIND 

(http://www.aew.wur.nl/UK/GRIND) using an Euler integration scheme with a step of 0.02 day. 

SUPPLEMENTARY INFORMATION
doi:10.1038/nature10723

WWW.NATURE.COM/NATURE | 1



 

 

 
 
 
Supplementary Figure 1.1. Critical transitions in a modelled phytoplankton population 

under light stress.  (a) When light reaches a threshold value an unstable equilibrium that marks 

the border of the basin of attraction (dashed curve) collides with the stable equilibrium (upper 

solid curve) in a fold bifurcation. Here, stability of the high biomass state is lost and the population 

will collapse. (b) Return rates to the stable state (absolute eigenvalues) go to zero as the fold 

bifurcation is approached. Recovery from a perturbation (by biomass removal) is faster far from 

the bifurcation (panel c; Iin=550 µmol photons m-2 s-1) than close to the bifurcation (panel d; 

Iin=1100 µmol photons m-2 s-1). 
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Supplementary Notes 2. Correction of the Light Data for Light Meter Position 
 

The outgoing light data showed small jumps at the moments of re-attachment of the light meters. 

These jumps were corrected by matching the average of the last five five-minute averages of the 

light attenuation data before removing the sensor to the first five five-minute averages of the light 

attenuation data after re-attaching the light sensor (Supplementary Figure 2.1).  

 
 

 
 
 
Supplementary Figure 2.1. Correction of the light data for differences in light meter 

position. Lines indicate uncorrected (dark blue, M1; dark green M2) and corrected (light blue, 

M1; light green, M2) extinction coefficients of both microcosms.  
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Supplementary Notes 3. Culture Conditions Under Light Stress 
 
Changes in chlorophyll-a concentrations and biovolumes of the cyanobacterial populations 

showed similar patterns as light attenuation. Microcosm 1 (M1) reached a stable light attenuation 

coefficient at an Iin of 477 µmol photons m-2 s-1, microcosm 2 (M2)  reached a stable light 

attenuation coefficient at an Iin of 571 µmol photons m-2 s-1. Both cultures reached high population 

densities, with maximum chlorophyll-a concentrations of 44.12 mg l-1 for M1 and 43.09 mg l-1 for 

M2. Maximum biovolumes were 22 µl ml-1 for M1 and 15 µl ml-1 for M2. The cultures were not 

kept in a stable state, but continuously changed in growth rate due to increases in light intensity. 

Maximum growth rates observed during the experimental period were 0.48 d-1 for M1 (at an I-in of 

728 µmol photons m-2 s-1) and 0.35 d-1 for M2 (at an I-in of 774 µmol photons m-2 s-1). Around an 

I-in of 980 µmol photons m-2 s-1 for M1 and 1210 µmol photons m-2 s-1 for M2 the cultures started 

to wash out, i.e. the growth rates were lower than the chemostat dilution rate. Growth rates did 

not drop to 0 during the experiment. 
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Supplementary Notes 4. Autocorrelation and Variance as Early-Warnings in this Experiment 

 

The null model for measurement noise. Autocorrelation and variance are indirect measures of 

critical slowing down, which are expected to increase before a critical transition 3. These 

indicators require a noisy variation in the conditions with a reasonably constant distribution 3. This 

experiment was not designed to have such variation in conditions, so most variation in biomass 

could be attributed to measurement noise, e.g. from the light sensors. Measurement noise in light 

measurements translates in a nonlinear way to the vertical light attenuation through the Lambert-

Beer law. We analysed the potential effect of this nonlinear translation on observed trends in 

variance and autocorrelation towards the tipping point by comparing the experimentally observed 

trends with 1000 data sets generated with a null model. In this model we assume that all variation 

in the measurements is uncorrelated and normally distributed measurement noise.  

 

First, we estimated the distribution of the maximal possible measurement noise. For this we 

detrended the measured light intensity (Iout) with a polynomial of two degrees for each 

uninterrupted period between the daily manipulations and light increments. The standard 

deviations of the residuals were indeed reasonably constant: there was only a weak positive trend 

in M2 (M1: n=23, R2=0.012, P=0.617; M2: n=23, R2=0.337, P=0.004). The measurement noise 

was assumed to be normally distributed with the average standard deviation of the residuals of 

each microcosm. 

 

Then, we generated 1000 data sets by adding this measurement noise to the polynomials 

describing the daily trends in light intensity (Iout). Subsequently, we calculated the vertical light 

attenuation (Kd) from these generated data using the Lambert-Beer law. Of each of these 1000 

data sets we calculated the autocorrelation and the variance in the vertical light attenuation in the 

same way as described in the methods. We also determined the trends in autocorrelation and 

variance using Pearson’s correlation coefficient. We used the distributions determined with the 

1000 data sets to test whether the experimentally observed autocorrelation and variance was 

significantly different from the null model (i.e. when they were outside the 5% and 95% 

percentiles of the null model). As variance generated from the null model was strongly correlated 

with the biomass, we corrected the variance for the estimated effects of measurement noise 

propagation by subtracting the median of the null model (Fig. 2d).  

 

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature10723

WWW.NATURE.COM/NATURE | 5



Results. Contrary to the expectation, the variance of the light attenuation of the microcosms 

decreased towards the critical transition (Supplementary Fig. 4.1). However, if we draw all 

variation in the system independently from a normal distribution (the null model), the variance 

decreases in a very similar way (percentiles in Supplementary Fig. 4.1). Therefore the decrease 

in variance cannot be caused by the internal dynamics, but merely by the calculation of vertical 

light attenuation from the measured light. During the experiment, we increased the incoming light 

intensities, which translated to higher outgoing light and by the Lambert-Beer law to a decrease in 

the variance of the vertical light attenuation. If we try to correct for this effect by subtracting the 

median light attenuation estimated from the null model, we have mostly no significant trend, 

though the observed variance is mostly significantly different from the trends calculated in the null 

model (Supplementary Table 4.1). Averaging over 30 minutes made the trend slightly stronger, 

but overall still not significant.  

 

There was no trend in autocorrelation in the null model, so autocorrelation was less affected by 

measurement noise, though the variability was high (Supplementary Fig. 4.1). The trend in 

autocorrelation was both different from the null model and significantly positive (Supplementary 

Table 4.1). The result was robust for different ways of averaging the data (Supplementary Fig. 

4.1). 

 
Supplementary Table 4.1. Trends in autocorrelation and variance. The trends in 

autocorrelation and variance (as Pearson’s ρ correlation coefficient) were compared with trends 

from 1000 runs of the null model to get an estimate of the probability that these indicators differed 

from the null model. Linear regressions were performed to test how autocorrelation and variance 

were related to incoming light intensity (see Fig. 2 of the main text). 

 M1 
No averaging 

M1 
30 minutes 

M2 
No averaging 

M2 
30 minutes 

Autocorrelation     

  Null model (ρ) 0.295 (p<0.09) 0.361*(p<0.05) 0.444* (p<0.02) 0.431* (p<0.03) 

  Regression (R2) 0.087 (p<0.17) 0.130 (p<0.09) 0.197* (p<0.03) 0.186* (p<0.04) 

Variance     

  Null model (ρ) -0.97  (p<0.89) -0.88 *(p<0.05) -0.90 (p<0.99) -0.64  (p<0.99) 

  Regression (R2)** 0.007 (p<0.69) 0.10   (p<0.12) 0.19* (p<0.04) 0.011 (p<0.61) 

 
*= significant (p<0.05); **= corrected with the median of the null model.   
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Supplementary Figure  4.1. Autocorrelation and variance in both microcosms compared 

with probability distributions based on 1000 runs of the null models where fluctuations were 

assumed to be entirely due to uncorrelated measurement noise. The dashed lines are the 5 and 

95% percentiles of the model runs and the solid lines represent the medians. Different markers 

indicate the number of days after a perturbation. a,b) Microcosm 1, raw data (each 5 minutes); 

c,d) Microcosm 1 data averaged in non-overlapping periods of 30 minutes; e,f) Microcosm 2, raw 

data; g,h) Microcosm 2 data averaged over 30 minutes. 
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